我要投搞

标签云

收藏小站

爱尚经典语录、名言、句子、散文、日志、唯美图片

当前位置:2019斗牛棋牌 > 发射阵位 >

单位矩阵的特征值是什么怎么求

归档日期:08-05       文本归类:发射阵位      文章编辑:爱尚语录

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  a=1,E作用于任何向量都等于那个向量自身,故①式就是A=A,对任何向量成立。

  但特征向量要求非零,因此特征向量A可以为任意非零向量。也可以用一般的矩阵求特征值的方法解。

  设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。

  式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式 A-λE=0。

  若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

  若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

  设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关

  所以A的对应于特征值λ1=λ2=-2的全部特征向量为x=k1ξ1+k2ξ2(k1,k2不全为零),可见,特征值λ=-2的特征向量空间是二维的。注意,特征值在重根时,特征向量空间的维数是特征根的重数。

  知道合伙人教育行家采纳数:1904获赞数:2511从2011年9月至今就读于重庆大学数学与统计学院,目前已经报送至上海交通大学数学系继续攻读数学硕士学位。向TA提问展开全部

本文链接:http://root2shoot.com/fashezhenwei/341.html